\qquad Date:

Comparing Functions

Tell whether the table of values represents a linear, exponential, or quadratic function.
1.

\mathbf{X}	-1	0	1	2	3
\mathbf{Y}	9	2	-1	0	-1

2.

\mathbf{X}	-3	-2	-1	0	1
\mathbf{Y}	11	8	5	2	-1

3.

\mathbf{X}	-1	0	1	2	3
\mathbf{Y}	16	8	4	2	1

Write an equation to represent \#2 and \#3 from above.

2.

3.
4. Describe and correct the error in writing an equation for the function represented by the ordered pairs: $(-1,1),(0,2),(1,4),(2,8),(3,16)$

\mathbf{X}	-1	0	1	2	3
\mathbf{Y}	1	2	4	8	16

The ordered pairs represent an exponential function, which can be modeled by the equation below:

$$
\begin{aligned}
& y=m x+b \\
& y=2 x+2
\end{aligned}
$$

Match the scenario to the type. You may not use all types.
5. Each year, Jane records the number of tulips in her garden. The first year, she counted 5 tulips. She noticed that the tulips triple each year.
6. Coach Merrill kicks a soccer ball into the air. The height of the ball is measured over the next several seconds. After 3 seconds, it reaches a maximum height of 100 feet.
7. A taxi driver charges an $\$ 8$ minimum, plus $\$ 0.10$ per mile driven.
8. Ms. Wiggins starts with 100 pencils on the first day of school. Each week, her supply decreases by 6 pencils.
9. Dr. Jones starts with 6000 bacteria in the lab. Each hour, the amount decreases by half.
10. You take out a loan for $\$ 5000$, and each month, you pay off $\$ 100$.
A. Increasing Linear Function
B. Decreasing Linear Function
C. Exponential Growth
D. Exponential Decay
E. Quadratic Function
F. Arithmetic Sequence
G. Geometric Sequence
11. On day 1 of a basketball tournament, there are 64 teams. After each round, one-half of the remaining teams are eliminated.
a. Would this scenario be best represented by a function or sequence?
b. Make a table showing the number of teams after each round.
c. Determine the type of function/ sequence that best represents this situation.
d. Write a function/ sequence that models the data.
e. After which round do you know the team that won the tournament?
12. Which table of values represents a linear relationship?

\mathbf{X}	-1	0	1	2	3
\mathbf{Y}	-3	-2	1	6	13

\mathbf{X}	-3	-2	-1	0	1
\mathbf{Y}	-3	-1	1	3	5

\mathbf{X}	-1	0	1	2	3
\mathbf{Y}	-1	0	1	8	27

13. The table below shows the average yearly balance in a savings account where interest is compounded annually. Not money is deposited or withdrawn after the initial amount is deposited.

Which type of function best models the given data?
A. Linear function with a negative rate of change
B. Linear function with a positive rate of change
C. Exponential Decay
D. Exponential Growth

Year	Balance, in Dollars
0	380.00
10	562.49
20	832.63
30	1232.49
40	1824.39
50	2700.54

14. Federal spending (in billions of dollars) for public education during the years 19992001 is represented by the function $S(x)=3.32 x+23.16$ where x is the number of years after the beginning of 1990. Which statement below best describes the rate of change of the model?
A. Each year the spending increased by 23.16 billion dollars on average
B. Each year 3.32 year period, the spending increased by a billion dollars on average
C. Each year, spending increased by 3.32 billion dollars on average
D. Each year, spending decreased by 3.32 billion dollars on average
