__ Date _____

Comparing Linear and Exponential Equations

	Linear	Exponential	
General Form	f(x) = mx + b	$f(x) = a(b)^{x}$	
Example	f(x) = 2x + 3	$f(x) = 3(2)^{x}$	
y-intercept			
Describe the Change (Do we add or subtract, multiply or divide? By how much?			
Table (Use your calculator to complete the table)	x f(x) 0 1 2 3	x f(x) 0 1 2 3	
Graph	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Write a Story to represent the example. Be creative, but be sure to include the y-intercept and the change.			

Which function increases faster, f(x) = 2x + 1 or $g(x) = 2^x - 1$? Make a table of values to help you decide.

х	f(x) = 2x + 1
-1	
0	
1	
2	
3	
4	

Where will the two functions intersect?

х	$g(x) = 2^{x} - 1$
-1	
0	
1	
2	
3	
4	

Compare each pair of functions based on their rate of change or y-intercept. Shade the correct statement at the bottom of each box in green.

1. Function 1: x -6 -5 -4 -3 Function 2: y = 5	y 0 3 6 9	2. Function 1: Function 2: $y = \frac{1}{2}$	x+1	3. Function 1: x 2 9 y 0 2 Function 2:	
Function 2 has a greater rate of change.	Function 1 and Function 2 have the same rate of change.	Function 1 has a greater rate of change on the interval [2,4]	Function 2 has a greater rate of change on the interval [2,4]	Function 2 has a greater rate of change.	Function 1 and Function 2 have the same
4. Function 1: y= Function 2: x -1 0 1 2 3	3(2) ^x <u>y</u> 1/3 1 3 9 27	5. Will and Keller caught lizards at a constant rate throughout the day. The lizards Will caught are represented by the graph below. The lizards Keller caught is represented in the table. Who caught lizards at a <u>slower</u> rate? Will's Lizards Keller's Lizards		6. Dr. Nelson's str working on a l Group A starte flies, which are each day. Gro with 1800, whi 300 each day decreased at during Day 1 t one decrease during Day 4 t write an equa a table)	udents are ab in AP Bio. ed with 2430 fruit e dying by a third oup B started ch are dying by . Which one a faster rate o Day 3? Which ed at a faster rate o Day 5? (Hint: tion and create
Function 1 has	Function 2 has	# of Lizards	2 6 10	Group A's die at a faster rate Day 1 - 3.	Group B's die at a faster rate Day 1 - 3.
a higher y- intercept.	a higher y- intercept.	lizards at a slower rate	lizards at a slower rate.	Group A's die at a faster rate Day 4 - 5.	Group B's die at a faster rate Day 4 - 5.
. For each representation below, determine if they are linear or exponential, and then write the equations.					

Problem 1, Function 1	Problem 3, Function 2	Problem 4, Function 2
Linear or Exponential?	Linear or Exponential?	Linear or Exponential?
f(x) =	f(x) =	f(x) =

8. What is the key in determining if a scenario is linear or exponential? Circle ALL of the exponential representations above in blue, and put a box around the linear representations in red.