\qquad
\qquad
Comparing Linear and Exponential Equations

	Linear						Exponential				
General Form	$f(x)=m x+b$						$f(x)=a(b)^{x}$				
Example	$f(x)=2 x+3$						$f(x)=3(2)^{x}$				
y-intercept											
Describe the Change (Do we add or subtract, multiply or divide? By how much?											
Table (Use your calculator to complete the table)		0 1 2 3			$f(x)$			x 0 1 2 3	\qquad	$f(x)$	
Graph	10 9 8 7 6 5 4 3 3 2 1					$\xrightarrow[s_{x}]{ }$	$\begin{aligned} & 30 \\ & 28 \\ & 26 \\ & 24 \\ & 22 \\ & 20 \\ & 18 \\ & 18 \\ & 16 \\ & 14 \\ & 12 \\ & 10 \\ & 8 \\ & \hline 6 \\ & 4 \\ & 2 \end{aligned}$			T	
Write a Story to represent the example. Be creative, but be sure to include the y-intercept and the change.											

Which function increases faster, $\mathrm{f}(\mathrm{x})=\mathbf{2 x + 1}$ or $\mathrm{g}(\mathrm{x})=\mathbf{2 x}-\mathbf{1}$? Make a table of values to help you decide.

x	$f(x)=2 x+1$
-1	
0	
1	
2	
3	
4	

x	$g(x)=2^{x}-1$
-1	
0	
1	
2	
3	
4	

Compare each pair of functions based on their rate of change or y-intercept. Shade the correct statement at the bottom of each box in green.

7. For each representation below, determine if they are linear or exponential, and then write the equations.

Problem 1, Function 1	Problem 3, Function 2	Problem 4, Function 2
Linear or Exponential?	Linear or Exponential?	Linear or Exponential?
$f(x)=$	$f(x)=$	$f(x)=$

8. What is the key in determining if a scenario is linear or exponential? Circle ALL of the exponential representations above in blue, and put a box around the linear representations in red.
