

1. For the following two functions, write the equations of each and complete the chart using <, >, or = to compare them. f(x) g(x) Х

$$f(x) = -2x + 5$$

 $g(x) = -\frac{1}{12}x - 7$

Characteristic of f(x)	<, >, or =	Characteristic of g(x)
y-intercept of f(x) =		y-intercept of g(x) =
f(4) =		g(4) =
Rate of Change of f(x) =		Rate of Change of g(x) =

2. Pertaining to the table at the right:

a) Find the average rate of change on the interval

2 <u>≤ x ≤</u> 3. A. 2 B. -2 C. 6.8

D. -6

b) Find the average rate of change on the interval 4 < x < 5.

A. 2 B. -2 C. 6.8 D. -6

c) Find the average rate of change on the interval 3 < x < 4.

B. -2 C. 6.8 A. 2

D. -6 d) Is the function displayed in the table a linear function?

X	f (x)
1	21
2	18
3	16
4	10
5	8

Х

0

1

2

3

4

5

Linear

y = 2x + 2

2

4

6

9

10

12

Quadratic

 $y = x^2 + 2$

L

3

6

11

18

21

Exponential

y = 2^x

1

2

4

8

16

32

Let's fill out the table to compare linear, quadratic and exponential functions over time.

1. Calculate and compare the slopes for each function from $x_1 = 0$ to $x_2 = 1$

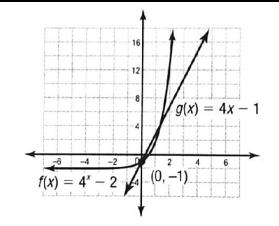
Linear's R.O.C 4 - 2 = 2 = - = 2	Quadratic's R.O.C. 3-2 = 1 = 1	Exponential's R.O.C. 2 - 1 = 1 - 1 = 1
1-6 1-0	1-0 1-1	-0

Whose R.O.C. is the steepest?

2. Calculate and compare the slopes for each function from $x_1 = 2$ to $x_2 = 3$.

Linear's R.O.C	Quadratic's R.O.C.	Exponential's R.O.C.	
Whose R.O.C. is the steepest?			

3. Calculate and compare the slopes for each function from $x_1 = 4$ to $x_2 = 5$.


Linear's R.O.C $12-10 = \frac{2}{1} = 2$ 5-4 = 1 = 2	Quadratic's R.O.C. $\frac{21 - 18}{5 - 4} = \frac{9}{1} = 9$	Exponential's R.O.C. $\frac{32-16}{5-4} = \frac{16}{1} = \frac{16}{1}$		
Whose R.O.C. is the steepest? Exponential				

★VERY IMPORATANT TO KNOW!

e Exponential function

Conclusion over a LONG period of time the <u></u>will exceed the value of the other functions.

- 4. Based on the graph on the right, which statement is not true?
 - A. Functions f and g have the same x-intercept.
 - B. The ordered pair (1, 2) is a solution for f(x).
 - C. The ordered pair (2, 7) is a solution for g(x).
 - D. The value of f(x) begins to exceed g(x) during the interval x = 1 and x = 2.

