1. For the following two functions, write the equations of each and complete the chart

using <, >, or = to compare them.

f(x) =

g(x) =

f (x)

21

18

16

10

8

Characteristic of f(x)	<, >, or =	Characteristic of g(x)
y-intercept of f(x) =		y-intercept of g(x) =
f(4) =		g(4) =
Rate of Change of f(x) =		Rate of Change of g(x) =

- 2. Pertaining to the table at the right:
 - a) Find the average rate of change on the interval $2 \le x \le 3$.

A. 2

B. -2 C. 6.8

D. -6

b) Find the average rate of change on the interval 4 < x < 5.

A. 2

B. -2

C. 6.8

D. -6

5

X

1

2

3

4

c) Find the average rate of change on the interval 3 < x < 4.

A. 2 B. -2

C. 6.8 D. -6

d) Is the function displayed in the table a linear function?

Let's fill out the table to compare linear, quadratic and exponential functions over time.

х	Linear y = 2x + 2	Quadratic $y = x^2 + 2$	Exponential y = 2×
0			
1			
2			
3			
4			
5			

1. Calculate and compare the slopes for each function from $x_1 = 0$ to $x_2 = 1$.

Linear's R.O.C	Quadratic's R.O.C.	Exponential's R.O.C.
Whose R.O.C. is the stee	epest?	

2. Calculate and compare the slopes for each function from $x_1 = 2$ to $x_2 = 3$.

Linear's R.O.C	Quadratic's R.O.C.	Exponential's R.O.C.
Whose R.O.C. is the steepest?		

3. Calculate and compare the slopes for each function from $x_1 = 4$ to $x_2 = 5$.

Linear's R.O.C	Quadratic's R.O.C.	Exponential's R.O.C.
Whose R.O.C. is the steepest?		

★VERY IMPORATANT TO KNOW!

Conclusion over a LONG period of time the ______ function will exceed the value of the other functions.

- 4. Based on the graph on the right, which statement is not true?
 - A. Functions f and g have the same x-intercept.
 - B. The ordered pair (1, 2) is a solution for f(x).
 - C. The ordered pair (2, 7) is a solution for g(x).
 - D. The value of f(x) begins to exceed g(x) during the interval x = 1 and x = 2.

