\qquad
\qquad

1. For the following two functions, write the equations of each and complete the chart using $<,>$, or $=$ to compare them.
$f(x)=$

$$
g(x)=
$$

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-3	11
-1	7
1	3
3	-1
5	-5

Characteristic of $f(\mathbf{x})$	$<,>$, or $=$	Characteristic of $\mathbf{g (x)}$
y-intercept of $f(x)=$		y-intercept of $g(x)=$
$f(4)=$		$g(4)=$
Rate of Change of $f(x)=$		Rate of Change of $g(x)=$

2. Pertaining to the table at the right:
a) Find the average rate of change on the interval $2 \leq x \leq 3$.
A. 2
B. -2
C. 6.8
D. -6
b) Find the average rate of change on the interval $4 \leq x \leq 5$.

\mathbf{x}	$\mathbf{f (x)}$
1	21
2	18
3	16
4	10
5	8

A. 2
B. -2
C. 6.8
D. -6
c) Find the average rate of change on the interval
$3 \leq x \leq 4$.
A. 2
B. -2
C. 6.8
D. -6
d) Is the function displayed in the table a linear function?

Let's fill out the table to compare linear, quadratic and exponential functions over time.

x	Linear $y=2 x+2$	Quadratic $y=x^{2}+2$	Exponential $y=2 x$
0			
1			
2			
3			
4			
5			

1. Calculate and compare the slopes

Exponential's R.O.C.

Whose R.O.C. is the steepest?
2. Calculate and compare the slopes for each function from $x_{1}=2$ to $x_{2}=3$.

Linear's R.O.C	Quadratic's R.O.C.	Exponential's R.O.C.

3. Calculate and compare the slopes for each function from $x_{1}=4$ to $x_{2}=5$.

Linear's R.O.C	Quadratic's R.O.C.	Exponential's R.O.C.
Whose R.O.C. is the steepest?		

*VERY IMPORATANT TO KNOW!
Conclusion over a LONG period of time the \qquad function will exceed the value of the other functions.
4. Based on the graph on the right, which statement is not true?
A. Functions f and g have the same x-intercept.
B. The ordered pair $(1,2)$ is a solution for $f(x)$.
C. The ordered pair $(2,7)$ is a solution for $g(x)$.
D. The value of $f(x)$ begins to exceed $g(x)$ during the interval $\mathrm{x}=1$ and $\mathrm{x}=2$.

