Average Rate of Change

Formula using function notation: $\left.m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right]=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$

$$
\begin{aligned}
& \text { 2. } f(x)=--4)+10 \text { from }[-1,3] . \\
& f(-1)=-4(-1)+10=14 \quad \begin{array}{lll}
x_{1} & (-1,14) & (3,-2) \\
x_{1}, y_{1} & x_{2} & y_{2}
\end{array} \\
& f(3)=-4(3)+10=-2 \quad m=\frac{-2-14}{3-(-1)}=\frac{-16}{4}=-4 \\
& 3+1
\end{aligned}
$$

3. a. Find the rate of change from day 1 to 2 .
4. a. Find the average rate of change from $0 \leq x \leq 1$

$$
\begin{aligned}
& (0,-5)(1,-8) \\
& x_{1} y_{1} x^{2} y_{2} \\
& m=\frac{-8-(-5)}{1-0}=\frac{-9+5}{1}=-3
\end{aligned}
$$

b. Find the average rate of change from $\underline{4} \leq x \leq 5$

$$
(4,-5)(s, 0)
$$

$$
\begin{aligned}
& 44_{1}-y_{1}\left(x_{1} x_{2}\right. \\
& x_{1} y_{1}
\end{aligned}
$$

$$
\frac{\left.\begin{array}{l}
x_{1} y_{1} x_{2} y_{2} \\
m-0-(-5) \\
5-4
\end{array}=\frac{5}{1}=5\right]}{}
$$

$$
\begin{aligned}
& (1,19)(2,30) \\
& x_{1} y_{1} \quad x_{2} y_{2} \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{30-19}{2-1}=\frac{11}{1}=11 \\
& \begin{array}{l}
\text { DAYS } \quad \text { AMOUNT OF } \\
(X)
\end{array} \\
& \text { b. Find the rate of } \\
& \text { change from day } 2 \text { to } 5 \text {. } \\
& (2,30)(5,121) \\
& \begin{array}{l}
x_{1} y_{1} x_{2}^{\prime} y_{2} \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{121-30}{5-2}-\frac{91}{3}, ~
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. } f(x)=2 x^{2}-3 \text { from (2) 4]. } \\
& f(2)=2(2)^{2}-3=5^{2} \\
& \begin{array}{c}
x_{1} \quad y_{1} \\
f(4)=2(4)^{2}-3=29
\end{array} \\
& x_{2} \quad y_{2} \\
& \begin{array}{lll}
{ }^{41} . & & \\
x_{2} & (2,5) & (4,29) \\
& x_{1} y_{1} & y_{2} \\
& & \\
& 29-5 & 24
\end{array} \\
& m=\frac{29-5}{4-2}=\frac{24}{2}=12
\end{aligned}
$$

1. Find the rate of change of Pete's height from 3 to 5 years.

Time (years)	1	2	3	4	5	6
Height(in.)	27	35	37	42	45	49

$$
\begin{aligned}
& (3,37)(5,45) \\
& x_{1} y_{1} x_{2} y_{2} \\
& m=\frac{y_{2}-y_{1}}{x-x_{1}}=\frac{45-37}{5-3}=\frac{8}{2}=4
\end{aligned}
$$

2. For $f(x)=-6 x-2$, find the rate of change on the interval $[-2,4]$.

$$
\begin{array}{ll}
f(-2)=-6(-2)-2=12-2=10 & (-2,10) \quad(4,-26) \\
f(4)=-6(4)-2=-24-2=-26 & x_{1} y_{1} \quad x_{2}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-26-10}{4-(-2)}=\frac{-36}{6}=-6
\end{array}
$$

3. For $f(x)=x^{2}+4 x+1$, find the rate of change on the interval $[-2,4]$.

$$
\begin{array}{lc}
f(-2)=(-2)^{2}+4(-2)+1=4-8+1=-3 & (-2,-3)\binom{4}{, 33} \\
x_{1} y_{1} & x_{2} y_{2} \\
f(4)=(4)^{2}+4(4)+1=16+16+1=33 & m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{33-(-3)}{4-(-2)}=\frac{36}{6}=6
\end{array}
$$

4. You and a friend are trying to decide which theater to go to for a Friday night movie. NCG charges $\$ 7$ for the movie ticket and $\$ 3$ per food item. Regal's prices are represented by the table.

Write an equation for NCG and Regal. Compare their rates of change and initial cost.

$$
\text { NCG: } f(x)=3 x+7 \quad \text { Regal: } g(x)=4 x+4
$$

x	$g(x)$
0	-3
1	8
2	$12>+4$
3	16
4	20

Characteristic NCG	$<,>$, or $=$	Characteristic of Regal
y-intercept of $f(x)=7$	$>$	y-intercept of $g(x)=4$
$f(4)=3(4)+7=19$	$<$	$g(4)=\boldsymbol{4}(\mathbf{4})+4=20$
Rate of Change of $f(x)=3$	$<$	Rate of Change of $g(x)=4$

