Average Rate of Change

that describes how one

quantity changes as another quantity

We know it as Sope = rise

I shew hindress have a constant rate of change, meaning values increase or decrease at the **Some** rate over a period

of time.

Positive R.O.C: in creases over

Zero R.O.C:

doesn't change

Negative R.O.C: decreases overtime

Undefined R.O.C:

Vertical

Formula using function notation:

f(4) = 2(4)^L -3 = 29

2. f(x) = -4k + 10 from [-1, 3].

+(-1)=-4(-1)+10=1+ (-1,14)

3. a. Find the rate of change from day 1 to 2.

(1, 19) (2,30) x, y, x, y,

b. Find the rate of change from day 2 to 5. (2,30) (5,121)

DAYS **AMOUNT OF** BACTERIA F(X) (X)

48

4. In 2008, about 66 million U.S. households had both landline phones & cell phones. Find the rate of change from YEAR **HOUSEHOLDS IN**

<u>2008</u> – 2011. (2008,66) (2011,51)

(X) MILLIONS F(X) 2008 66 2009 61 2010 56 2011

What does this mean? I and lines is decreasing by 5 million per year.

5. a. Find the average rate of change from $0 \le x \le 1$

(0.-5) (1,-8)

b. Find the average rate of change from $4 \le x \le 5$

5. Find the average rate of change from [0,1]

b. Find the average rate

1. Find the rate of change of Pete's height from 3 to 5 years.

					\triangle	
Time (years)	1	2	3	4	5	6
Height(in.)	27	35	37	42	45	49

$$(3,37)(5,45)$$

$$X_{1} Y_{1} X_{2} Y_{3}$$

$$M = \frac{Y_{2} - Y_{1}}{X_{2} - X_{1}} = \frac{45 - 37}{5 - 3} = \frac{8}{2} = 4$$

2. For f(x) = -6x - 2, find the rate of change on the interval [-2, 4].

$$(-2,10) \quad (4,-26) \\ \times_1 \quad Y_1 \quad \times_2 \quad Y_2 \\ m = \frac{Y_2 - Y_1}{X_1 - X_1} = \frac{-26 - 10}{4 - (-2)} = \frac{-36}{6} = \frac{-6}{6}$$

3. For $f(x) = x^2 + 4x + 1$, find the rate of change on the interval [-2, 4]. $f(-2) = (-2)^2 + 4(-2) + 1 = 4 - 8 + 1 = -3$ (-2, -3) (4.33)

$$M = \frac{y_2 - y_1}{x_1 - x_1} = \frac{33 - (-3)}{4 - (-2)} = \frac{3b}{b} = 6$$

4. You and a friend are trying to decide which theater to go to for a Friday night movie. NCG charges \$7 for the movie ticket and \$3 per food item. Regal's prices are represented by the table.

Write an equation for NCG and Regal. Compare their rates of change and initial cost.

^	9(^)	
0		9.1
1	8 <	44
2	12	744
3	16	+4
4	20 /	44

$$NCG: f(x) = 3x + 7$$

Regal:
$$g(x) = \forall \chi \rightarrow \psi$$

Characteristic NCG	<, >, or =	Characteristic of Regal
y-intercept of f(x) = 7	>	y-intercept of $g(x) = \Psi$
f(4) = 3(4)+7=19	<	g(4) = 4(4)+4 = 20
Rate of Change of $f(x) = 3$	<	Rate of Change of $g(x) = 4$