\qquad
\qquad

Characteristics of Functions

Even and Odd				
Algebraically	Even	Odd	Neither	
Graphically				

NOTE: All constants really have \qquad and x^{0} is \qquad .

Determine if the functions are even, odd, or neither.

1. $f(x)=x^{3}-x$
2. $f(x)=x^{2}+1$
3. $f(x)=2 x^{4}-3$
4. $f(x)=x^{3}+2 x$
5. $f(x)=-x^{3}$
6. $f(x)=x^{3}-x^{2}$
7. $f(x)=x^{2}+3$
8. $f(x)=x^{3}+4 x+1$
9.

10.

11.

12.

Discrete and Continuous

	Discrete	Continuous
Definition		
Examples		

Determine if the scenario would be discrete or continuous.

1. Recording your height as you get older
2. The number of t-shirts ordered for a fundraiser

Domain and Range

The \qquad of a relation is the set of all \qquad or \qquad .

The \qquad of a relation is the set of all the \qquad or \qquad .

Notation	Definition	Examples
Set Notation		
Algebraic Notation		
Interval Notation		

Determine the domain of the following functions.

Domain:
Range:

Domain:
Range:

Domain:
Range:

Discrete or Continuous?
Domain:
Range:

